

Varun Kotian

+31 06 45598501 | connect@varunkotian.com | Delft, Netherlands
www.varunkotian.com | LinkedIn | Google Scholar | ResearchGate

About Me

Researcher with a PhD at the intersection of human factors and vehicle/simulator control. Proven in end-to-end algorithm development, from modelling and data analysis to real-time implementation and validation in simulators and research vehicles. Expertise in observer-based control, real-time systems, experimental design and validation, physiological and motion sensors, and quantitative/statistical analysis. Aspiring to advance research in human-centered automated driving and ADAS.

Education

<i>PhD Mechanical Engineering, TU Delft and Toyota Motor Europe</i>	<i>Finished Sep 2025 (Defence in March 2026)</i>
<i>MSc Vehicle Engineering, TU Delft</i>	<i>Graduated 2021</i>
<i>BTech Mechanical Engineering, K J Somaiya College of Engineering</i>	<i>Graduated 2018</i>

Experience

<i>PhD Researcher TU Delft, Netherlands & Toyota Motor Europe, Belgium</i>	<i>October 2021 – September 2025</i>
<ul style="list-style-type: none">Developed motion comfort prediction models using state-observer feedback control and LSTM-based machine learning in MATLAB, Simulink, and C++, improving prediction accuracy by 34%.Led validation experiments in driving and flight simulators, research vehicles, and virtual reality, designing and executing these studies using IPG CarMaker, ROS 2, Unity, and MATLAB.Developed algorithms that reduced motion sickness in moving-base driving simulators by 50% compared to the state of the art.Built Python-based data acquisition systems to capture skin conductance (EDA), heart rate, muscle activity (EMG), eye movements (eye tracking), and body motion (IMU- and camera-based).Collaborated across time zones with TU Delft, Toyota Motor Europe, Toyota Motor Corporation, NAIST, TNO, and DLR to deliver joint results across Europe and Japan.Communicated ideas and findings to academia and industry through two conference presentations and numerous live demos, adapting content for both technical and non-technical audiences.	
<i>Visiting Researcher Nara Institute of Science & Technology, Nara, Japan</i>	
<ul style="list-style-type: none">Executed experiments on a 6DOF simulator with virtual reality headsets to gather user-centric data, contributing to motion perception model performance optimization.Developed wireless data-collection systems using ESP32 microcontroller (in C) designed custom PCBs in EasyEDA, and 3D-printed measurement fixtures for rapid, field-ready instrumentation.	

<i>Research Engineer TU Delft, Netherlands</i>	<i>October 2023 – April 2024</i>
<ul style="list-style-type: none">Designed and built end-to-end teleoperation for a Prius research vehicle using Autoware on ROS 2 with Python and C++.Set up Linux-based networking and WebRTC for low-latency two-way audio/video. Routed steering, acceleration, and brake commands to the vehicle.Used Docker and Git/GitLab for collaborative development and deployment.	

- Designed and executed user studies to evaluate HMI modalities that convey motion intent/preview in AVs, quantifying impacts on motion sickness and comfort.
- Benchmarked in-vehicle sensing solutions for head/trunk motion (IMUs, XSens, OptiTrack), assessing accuracy, latency, robustness, and integration trade-offs.
- Analysed results with statistical methods to inform HMI and sensor selection for comfort-focused AV features.

Vehicle Dynamics Engineer
Nova Electric Racing, Delft, Netherlands

September 2020 – August 2021

- Developed and validated lap-time and vehicle-dynamics simulations to guide chassis, suspension, and powertrain decisions for the electric race bike.
- Ran parameter sweeps and telemetry-based model calibration in MATLAB/Simulink and Python to quantify trade-offs and optimize setup.

Aerodynamics Head & Assistant Technical Coordinator
Orion Racing India, Mumbai, India

August 2015 – August 2018

- Led the design and development of a carbon fibre aerodynamic package for a Formula Student car, executing CAD (SolidWorks), structural FEA (ANSYS), and CFD (SimScale & ANSYS) to balance downforce, drag, and manufacturability.
- Drove integration of aerodynamics with chassis, powertrain and cooling by defining structural requirements and assembly processes.
- Supported the team's transition to an electric platform, aligning aero, packaging, thermal, and HV/LV considerations to enable sustainable performance gains.

Technical Skills

Programming	MATLAB, Simulink, C, C++, Python
DevOps & Tooling	Git, GitLab, Docker, CI/CD, Scripting/Automation
Data/Analysis	Statistical analysis, experimental design, signal processing, time-series analysis, hypothesis testing, regression/ML basics
Control & Modelling	Model Predictive Control (MPC), vehicle dynamics modelling, human-in-the-loop modelling, motion comfort modelling
Embedded & Systems	CAN bus, microcontrollers, sensor/IMU integration, data acquisition
Simulation & Platforms	ROS 2, Linux, IPG CarMaker, 6-DOF driving/flight simulators, VR
Experimentation	User studies, HMI evaluation, motion capture, physiological sensors

Soft Skills

Communication, collaboration, leadership, problem solving, adaptability

Patents

- Reducing Discomfort in Driving Simulators: Motion Cueing Algorithm for Motion Sickness Control (2025)
- Personalized motion sickness modelling and predictive mitigation in automated driving and simulation environments (2025)